
RD-AI?3 7393 FORTRAN-?? CONPUTER PROGRAN STRUCTURE AND INTERNAL /
DOCUNENTATION STANDARD.. (U) AIR FORCE WEAPONS LUG

.5 KIRTLAND AFD NM J F JANNI ET AL. JUN986 AFNL-TR-95-26

UNCLASSIFIED F/ 92 NL7 I EEEEEEEEI
'MllfffflNENff
I flfflfllfl......
EEEEEEEEEEEEEE
IIllffllf

I~f .0 2.0 32

LL

MICROCOPY RESOLUTION TEST CHARTNATIONAL BUREAU OF STANDARDS 196 3 -A

44

AFWL-TR-85-26 AFWL-TR-
85-26

FORTRAN-77 COMPUTER PROGRAM STRUCTURE " ;

AND INTERNAL DOCUMENTATION STANDARDS
FOR SCIENTIFIC APPLICATIONS

Dr J.F. Janni - Principal Author

Maj R. Berry -Contributors
Mr J. Burgio
Dr G. Cable
Mr R. Conley, Jr
Capt H. Happ, III
Ms D. Janni ELECTE
Capt L. Lutz OC123MI I.
Mr H. Murphy - %,*

Mr N. Philliber "
Mr G. Radke, Jr
Capt J. Spear

June 1986

Final Report

Approved for public release, distribution unlimited.

AIR FORCE WEAPONS LABORATORY
,Air Force Systems Command

Kirtland Air Force BaseNM 87117-6008

%* -

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE 1

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified ,%
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE di stri bution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFWL-TR-85-26
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)
Air Force Weapons Laboratory NTCT p..

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) J.,
,%

Kirtland Air Force Base, NM 87117-6008

aa. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) -.... '

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS %

PROGRAM PROJECT TASK WORK UNIT ," .,
ELEMENT NO NO. NO ACCESSION NO ow.

62601F 8809 19 01
11 TITLE (Include Security Classification)

FORTRAN-77 COMPUTER PROGRAM STRUCTURE AND INTERNAL DOCUMENTATION STANDARDS FOR
SCIENTIFIC APPLICATIONS

1. PFRSONAL AII
T
HOR(S) Janni, J.F.; Berry, R. ; Burgio, J. ; Cable, G. ; Conley, R. ; Happ, H.;

Janni, D.; Lutz, L.; Murphy, H.; Philliber, N.; Radke, G.; Spear, J.
13a. TYPE O- REPURI 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 5.PAGECOUNT

Final - 1986, Jun 60
16, SUPPLEMENTARY NOTATION

The contributors are listed in alphabetical order.

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Standards FORTRAN
09 02 Program Structure Structured Programming

Internal Documentation Modular Programming (over)
19. ABSTRACT (Continue on reverse if necessary and identify by block number)
'An improved approach to programming has been developed in the last decade which produces
reliable, efficient computer programs using fewer labor hours and far fewer maintenance
hours than other coding approaches. This approach uses a disciplined style and is usually V741
referred to as structured programming. This standard applies the concepts of structured
programming to FORTRAN-77"(ANSI X3.9-1978)land contains procedures which result in better,
more reliable computer programs. It is based on many actual experiences, careful research,
and documented studies. This standard classifies coding practices into five categories:
mandatory, recommended, permitted, discouraged, and forbidden.

The objectives of this standard in directing the use of disciplined programming practices
are: , (over) .-'. ,

•%

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

" UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICESYMBOL

Dr Joseph F. Janni (505) 846-0861 AFSTC/CA
DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF -HIS PAGE "

All other editions are obsolete. UNCLASS I FT ED -4
UCAII

- UNCLASSI FIED .--.--. . l
SECURITY CLASSI FICATION OF THIS PAGE

* 18. SUBJECT TERMS (Continued) , -

Programing Practices

19. ABSTRACT (Continued)

(4')To apply an architectural and syntactical method to the FORTRAN-77 language
that greatly reduces the probability of errors.

(0-)To produce code that is modified easily, rapidly, and reliably by applying
the principles of modular, structured, and machine interchangeable FORTRAN-77.

%?
% ' '(c-}-;To improve code clarity, simplicity, robustness, and reliability.

'.(Cd)'-' To prohibit convoluted logic.

(e)' To produce well-documented code. ,

VA

.I

UNLSSFE

SFU4YC*SIFCTO O NSPG

AFWL-TR- 85-26 __

This final report was prepared by the Air Force Weapons Laboratory,

Kirtland Air Force Base, New Mexico, under job order 88091901. Dr Joseph F.
Janni (NTCT) was the Laboratory Project Officer-in-Charge.

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related procure-
ment, the United States Government incurs no responsibility or any obligation
whatsoever. The fact that the Government may have formulated or in any way
supplied the said drawings, specifications, or other data, is not to be regarded
by implication, or otherwise in any manner construed, as licensing the holder,
or any other person or corporation; or as conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way be related
thereto.

This report has been authored by employees of the United States Government.
Accordingly, the United States Government retains a nonexclusive, royalty-free
license to publish or reproduce the material contained herein, or allow others .
to do so, for the United States Govprnment purposes.

This report has been reviewed by the Public Affairs Office and is releasable
to the National Technical Information Service (NTIS). At NTIS, it will be
available to the general public, including foreign nationals.

If your address has changed, if you wish to be removed from our mailing

list, or if your organization no longer employs the addressee, please notify
AFWL/NTCT, Kirtland AFB, NM 87117-6008 to help us maintain a current mailing
list.

This report has been reviewed and is approved for publication.

4JOSEPH F. JANNI
Project Officer

/ FOR THE COMMANDER

KENNETH K. HUNT aRION F. SCH tID
Maj, USAF Lt Col, USAF
Chief, Technology Branch Chief, Space/C /Reentry Systems Div

NOT-I N COPIES OF THIS REPORT UNLESS CONTRACTUAL OBLIGATIONS OR NOTICE
ON A SPECIFIC DOCUMENT REQUIRES THAT IT BE RETURNED.

d.

,',,,

FOREWORD W

These standards are dedicated to all the programmers who have to modify someone
else's code.%J

The standards were born out of frustration and developed out of necessity. The situ-
ation that initiated their development occured at 3 o'clock in the morning on a Sunday.
We had been working all weekend trying to get answers from large FORTRAN program
designed to calculate a wide range of complex radiation effects. We had worked on the
project for several months and had encountered so many problems with these programs
that we had been forced into a 24 hour-a-day dedicated effort in order to meet the im-
pending deadline. The codes failed during execution every few hours. As I debugged each
code failure, I found the same poor programming that I had been finding repeatedly in
prior months. It was on this Sunday in the early morning hours that I decided to produce
a set of standards that would resolve these problems and prevent them in the future.

The radiation effects programs were almost impossible to understand. They also proved
to be very unreliable. The programs contained convoluted logic full of GO TO statements
and confusing structure. Whenever one "bug" was found and patched, the program was
resubmitted but another problem would soon occur. These programs evolved over a 10
year period and were written by dozens of programmers at several different facilities. All
of the programmers who had written these codes said that they understood and applied
good programming practices. Although they may have believed it themselves, only a
few actually implemented good programming practices. Most of the programminig was a
disaster.

It took over a year to develop the standards in this document. In addition to drawing on
our many years of combined experience for background material, the modern literature was
carefully reviewed. Recent well-documented and well-researched studies have been used
extensively. Appropriate literature citations are provided for those who wish to verify the
published research that supports this document. These standards are now solving the
overwhelming majority of our programming problems. I believe they can do the same for
others.

These standards are, of necessity, mechanical in nature. In some cases, recommenda- . .

tions are made but specific programming decisions are left to the programmer. In many
cases the programming approach is mandated. Adherence to this standard is a necessary
but not sufficient condition to produce large high-quality FORTRAN programs. These
standards must be used with a positive and constructive attitude if they are to be success-
ful.

The team of contributors to this document all share two crucial attributes: (1) they are
*1 excellent FORTRAN programmers (many are also proficient in other languages), and (2)

they all have had painful experiences with junk code which didn't work reliably and which?
wasn't documented. The entire team contributed to this document and the members abide
by it themselves.

After this document was released for an initial review by other programmers, two inter-

4.

esting trends were observed in their reaction. Programmers who routinely had to modify
code provided by someone else were strongly in favor of the standards. Programmers who
lirote original codes and who didn't have to use or modify other codes frequently did not

liethe standards. They claimed too many constraints were placed on their judgement,
unduly inhibiting their full capabilities as superior programmers. My sympathies are pri-
marily with the first group. Although I understand the attitude of the second group, I
do not agree with it. Large FORTRAN programs must be written in a consistent form

that maximizes the probability of success and simultaneously minimizes the introduction
of "bugs" through poor programming practices. Undisciplined programming with clever
methods and tricky algorithms is contrary to this objective. Undisciplined programming
also tends to be imbued with a programmer's idiosyncracies and is very difficult to verify

p and modify.
The most controversial aspect of this document is the tight control on the utilization

and structure of COMMON blocks. Our position on COMMON blocks is well-founded.
Another controversial issue is the mandatory application of FORTRAN implicit declara-
tions for variable and PARAMETER names. Again, the programmers who use and debug ~

V programs written by others have supported both restrictions; the programmers who write
code for their own use or for use by others usually disagree with our position. A

This standard discusses three general aspects of programs: structural content, doc- *

umentation, and cosmetic appearance. The latter characteristics include the format of
statement label fields, the columns and form of the comments, indentation rules, and
other similar features. They are mandated primarily to produce a uniformity of style
and appearance that is highly desirable in large FORTRAN programs written by many
individuals who would otherwise use widely different styles.

The standard is intended to be read from start to finish. It is written in a direct style
for easy reading, but as a result is not organized as a reference manual. For this reason, a
cross-reference index is included to help locate specific topics.

In order to keep this document as short as possible, the rationale for most of the
individual features of this standard is usually omitted. Exceptions are made for particularly
controversial features or for specific issues meriting a textual explanation. When possible,
citations to references are provided for those readers desiring supporting information.

Implementation of these standards will produce less expensive programs over the long ..

term because the resulting co,"ng will be more reliable, will contain fewer bugs, will be
* easier to modify, and will require far fewer maintenance hours than alternate FORTRAN

coding approaches. Over the short term, adherence to these standards will not substan-
tially increase the development time of a new program because the improved reliability,
organization, modularity, and understandability will offset the extra effort required for
documentation, testing, and peer review.

Joseph F. Janni

Albuquerque, New Mexico
December 9, 1985

'.....

iv

-_ -_ -

P %.

ACKNOWLEDGEMENTS

The suggestions of Capt. Raymond Leong and Ms. Cherise Jarrett were very help- -,.
ful in the development of this document. The extraordinary patience of Ms. Antoinette
Aguilar in flawlessly typing and correcting this document is sincerely appreciated. The
thorough editing by Ms. Carol Thompson of the AFWL Technical Reports Branch con-
tributed greatly to the final publication of this standard. The standard is a by-product
of computer code development in heavy ion transport that was funded by Dr. Arthur
Guenther, the chief scientist of the Air Force Weapons Laboratory, under ILIR8215. His
support is gratefully acknowledged.

-4..

Accesion For

NTIS CRAMI
D11C TAB *

U.-iarnounced ..

Juttifcti on

........ ~~

By

D tb ho I

V ~Availability Codes

Sp %° %I

.11-

(ILp

..-. , .°

-'(wy -4

CONTENTS

FOREWORD.. iii

ACKNOWLEDGEMENTS...................................... v

1 BACKGROUND..1I

2 OBJECTIVES... 1

3 CONCEPTS, DEFINITIONS, AND RELATED RESTRICTIONS.......... 2
3.1 PROGRAMMING LANGUAGE............................. 2
3.2 CODE... 2
3.3 PROGRAM.. 2
3.4 SUBPROGRAM....................................... 3
3.5 MODULE... 4
3.8 STRUCTURED STYLE.................................5 ...

4 PROGRAM ORGANIZATION................................. 7
4.1 EXECUTIVE CONTROL................................. 7
4.2 INPUT PRACTICES.................................... 7
4.3 COMPUTATIONAL SUBPROGRAMS........................ 9
4.4 OUTPUT SUBPROGRAMS............................... 9
4.5 ERROR EXIT SUBPROGRAMS............................ 10
4.6 BLOCK DATA PLACEMENT............................. 10

5 DOCUMENTATION...................................... 10
5.1 EXTERNAL DOCUMENTATION........................... 10
5.2 INTERNAL DOCUMENTATION........................... 10

5.2.1 Preamble documentation............................ 11 .

5.2.1.1 Executive preamble.......................... 11
5.2.1.2 Subprogram preamble........................ 12
5.2.1.3 Input subprogram preamble.................... 12

5.2.2 Comment form, style, and placement..................... 13

6 ROBUST PRINCIPLES AND IMPLEMENTATION.................. 14
6.1 CODE STRUCTURE................................... 14
6.2 GENERAL RULES.................................... 17
6.3 DATA INITIALIZATION................................. 18 * ~
6.4 ARITHMETIC OPERATIONS............................. 19
6.5 GENERAL INPUT/OUTPUT GUIDANCE..................... 21
6.6 DO LOOPS.. 21

Vii

:ft

8.7 BRANCHING.. 22
6.8 VARIABLE NAMES, TYPES, AND USE 22
6.9 COMMUNICATIONS VIA ARGUMENTS..................... 24

6.1 COMONBLOCKS................................... 2

6.2PROGRAM TERMINATION.............................. 27
6.3DEVELOPMENT PRACTICES AND PROGRAM TESTING.......... 27

7 NORGANIZATION 28

.8 S M NDEPENDENT CONSIDERATIONS. 29
8.1 PROGRAM EXECUTION PRESET. 29

. PROGRAM RESTART 29
83COMPILER OPTIONS.................................. 29

9NONSTANDARD PROGRAMMING............................ 30

1RESTRICTIONS ON FORTRAN-77............................ 30

REFERENCES 32

INDEX..................- 35

APPENDIX A: MODULES AND COMMON BLOCK RESTRICTIONS........ 38

4..

APPENDIX B: EXECUTIVE PREAMBLE EXAMPLE...................... 39

APPENDIX C: SUBPROGRAM PREAMBLE EXAMPLE................. 42

APPENDIX D: INPUT SUBPROGRAM PREAMBLE EXAMPLE........... 44

APPENDIX E: PRINTABLE US ASCII CHARACTERS 46

APPENDIX F: LOOP LEAVE AGAIN CONSTRUCT 48

APPENDIX G: CASE STRUCTURE AND REPEATED ELSEIF CONSTRUCTS 50

,o- ,. &p

°6% A .

viii

'*4. .'*;

- %. ."-

E L ~q , .F,. -,

1 BACKGROUND

An improved approach to programming has been developed in the last decade which
produces reliable, efficient computer programs using fewer labor hours and far fewer main- .
tenance hours than other coding approaches. This new approach uses a disciplined style
and is usually referred to as structured programming. This standard applies the concepts ..
of structured programming to FORTRAN-77 (ANSI X3.9-1978) and contains procedures
which result in better, more reliable computer programs (Ref. 1). It is based on many
actual experiences, careful research, and documented studies (Refs. 2-31).

This standard classifies coding practices into five categories: mandatory, recommended,
permitted, discouraged, and forbidden. A mandatory coding practice must always be

implemented. A recommended coding practice should usually be used, but the pro-
grammer can apply prudent judgement and occasionally deviate in a specific situation. A
permitted coding practice may be used. A discouraged coding practice should not be
used except on rare occasions and only if extraordinary care is taken. A forbidden coding
practice is never permitted. The boldface words in this paragraph clarify the intent of
practices discussed in this standard.

2 OBJECTIVES

The objectives of this standard in directing the use of disciplined programming practices
are:

* To apply an architectural and syntactical method to the FORTRAN-77 language
that greatly reduces the probability of errors. Poor use of the language creates many
problems (Ref. 18).

9 To produce code that is modified easily, rapidly, and reliably by applying the prin-
ciples of modular, structured, and machine interchangeable FORTRAN-77 that ad-
heres to top-down design.

9 To improve code clarity, simplicity, robustness, and reliability.

9 To prohibit convoluted logic.

* To minimize the dependence of one module on the internal details of another. A
module should have limited access to the data structures used by other modules.

* To produce well-documented code.

* To avoid the seemingly endless series of patches and repairs whose implementation
requires explicit changes in many places throughout the program.

..,..-',-:..

3 CONCEPTS, DEIITOS AND
* RELATED RESTRICTIONS

3.1 PROGRAMMING LANGUAGE

The programming language is ANSI FORTRAN-77, which is hereby made a part of
this standard. If there is a conflict between this standard and ANSI FORTRAN-77, the
provisions of this standard apply.*

3.2 CODE

Code is a term for instructions in a computer programming language.

3.3 PROGRAM
A program is an organized set of code tailored to perform specific tasks. The intent of

a FORTRAN-77 computer program is to solve a mathematical, logical, physical, technical,
or engineering problem. Although programs-including those written to solve apparently
simple problems--can be quite complex, the program should have a simple organization
and structure. A program should be partitioned into sections of code to perform specific A
tasks. These sections of code are composed of subprograms and modules consisting of
closely related subprograms:

EXECUTIVE (Master Control).

INPUT SECTION.

% Subprograms.

%COMPUTATIONAL SECTION.

Subprograms and Modules. ./'

OUTPUT SECTION.

Subprograms. 4'

ERROR EXIT SECTION.

Subprograms.

DATA STRUCTURE DEFINITION.

BLOCK DATA Subprograms. 4

*An extension to the FORTRAN-77 standard is the required use of the INCLUDE statement or its

equivalent (Ref. 20). Other limited exceptions are permitted only when specified explicitly by this 'r'

standard (refer to Section 9, page 30).

2

3.4 SUBPROGRAM

A. A subprogram is a SUBROUTINE, FUNCTION, or BLOCK DATA and is limited
- to a single purpose. A subprogram can reference (call) other subprograms, or it can

be referenced by the executive or other subprograms.

1. A directly subordinate subprogram is referenced by an executive or subprogram.
Specifically, a subprogram is directly subordinate to an executive (or another
subprogram) if it is explicitly referenced by the executive (or other subprogram).

2. An indirectly subordinate subprogram is referenced by a directly subordinate
subprogram or another indirectly subordinate subprogram. Specifically, a sub-
program is indirectly subordinate to an executive (or another subprogramn) if it
can be reached from the executive (or other subprogram) only through at least-
one intervening subprogram.

3. A basic subprogram does not reference any subordinate subprogram.

B. A subprogram must perform correctly the process claimed for it for all valid com-
binations of arguments, and it must detect and take defensive action for all invalid
arguments.

C. A subprogram should be written so that a typical programmer can determine that
it works correctly by careful inspection, logic verification, and execution tests.

D. Access to arrays and variables should be limited to those arrays and variables actually
needed in the subprogram (e.g., limit COMMON blocks and subprogram arguments

to those actually needed) (Refs. 18 and 31).
1. The primary method of providing access to arrays and variables is through

argument lists.

2. The secondary method of providing access is through labeled COMMON blocks,
whose usage is severely restricted (Ref. 6).

3. COMMON blocks may be either local or global.

a. A local COMMON block may be used only within a module. Once a value -

is set in a COMMON block it may not be changed unless it is a local -

COMMON block confined to a module, as defined in Section 3.5.
b. A global COMMON block may be used anywhere in a program but only

within specified constraints.
(1) Globally applied COMMON blocks are permitted to carry only un-

changing quantities into subprograms. Global COMMON blocks must
not transfer variables out of a subprogram that have been modified or
altered in that subprogram, except for the initialization of the COM-

.9 MON block. Data stored in a globally applied COMMON block must
not be subsequently modified.

.9. 3

(2) Globally applied COMMON blocks must be loaded by means of either
DATA statements in BLOCK DATA, by reading a data file at the be-
ginning of program execution, or by a one-time calculation.

3.5 MODULE
.- ..

A module (colloquially referred to as a package of tightly knit subprograms) consists
of closely related subprograms which share an execution and interface environment (refer
to Appendix A).

A. A module must have a well-defined objective of limited scope.

B. A module must manipulate a single conceptually related data structure. This data
structure is isolated from the external environment. No subprogram outside of the
module has access to, or information about, the data structure.

C. A module consists of one or more interface subprograms and subordinate subpro-
grams.

D. A module must have a minimal external interface. Variables and arrays may be
passed to and from a module only via arguments of interface subprograms.

E. Within a module, arrays and variables may be transferred vertically via arguments, or
transferred laterally between subprograms of the module via a single labeled COM-
MON block (containing conceptually related variables). This labeled COMMON
block is local and can be used only within the module.

F. A module must be thoroughly documented.

1. All subprograms in a module must be identified in their internal documentation
as belonging to the module.

2. Each interface subprogram must be explicitly identified as such in its internal
documentation.

3. Each interface subprogram must contain a master list showing the identities
and purposes of every subprogram in the module.

4. Each interface subprogram must be named in the internal documentation of -
every subprogram in the module.

G. Examples of modules include:

1. An input subprogram and its subordinate subprograms.

2. The subprograms comprising a consolidated phenomenological model.

3. A data manipulation subprogram, with subordinate subprograms performing
calculations of data on the grid.

4

H. Subprogralms and modules are fundamentally different; what is central to one may
be inappropriate to the other. A subprogram performs a single task, whereas a
module collects several tasks together which share the support of a data structure,
and which hide the data structure from the external environment. While a single
interface is good structure for a subprogram, it does not necessarily promote sound
programming for a module. A module should have a separate subprogram interfaceI%
for each operation on the data structure; each interface subprogram should have an
argument list that corresponds to the information needed to perform the task on the
data structure.

3.6 STRUCTURED STYLE

One of the fundamental elements of well-written code is the application of a structured
style to the complete program, to each subprogram, and to each module (Ref. 31).

*%4

A. Structured style applies to the complete program.

1 . Good structure is the key to both a well-organized program and a program that
can be easily adapted to solve new problems (Ref. 31). Changes to a program
should only require modifications to the executive and the addition of new sub-
programs and modules. It is widely agreed that logically partitioned FORTRAN
programs minimize code errors and execution failures (Refs. 4 and 6).

2. The schematic of a program is illustrated in Fig. 1. Each computer program
must be organized into separate sections:

a. executive, -

b. input,
C. computations,
d. output,
e. error exit if needed, and
f. data structure definition, if needed. '.9

3. This overall structure consolidates related tasks. Modifications and incorpora-
tion of new computational models are readily integrated into these sections.

B. Structured style applies to each subprogram. ~

1. Good structure allows a subprogram to be written independently of other sub- ~s
program, and allows subprogram to be modified or replaced quickly, easily,
and reliably (Ref. 2).

U,.2. Each subprogram must have a single purpose so that program modifications are
usually limited to changes in the executive and to the replacement or addition
of individual subprograms

5

1J

:'o .

%" %

EXECUTIVE BOKDATA]. -

NPUT ..

INPUT COMPUTATIN OUTPU.X

........................ E R O N IP%

Figure 1. Schematic of a computer program. Error exit subprograms may be "."'

called a neesary from any ubprogam.

[1 .

4.
.

-- %

• ..-. ,. . - - . ° - . . , •
.

: .:, : :.- .-,.F. igure,.. 1 ,... Sche-_ atc,. of a co m puter: progra.m .- Error\ . exit. -upr gr m m ay. be. -

3. The inputs and outputs of each subprogram must be well-defined with clear and
specific interfaces (Refs. 17-19).

C. Structured style applies to each module.

1. A module should be written independently of other modules, and should be writ-
ten so that it can be modified or replaced quickly, easily, and reliably (Ref. 2).

2. Each module must have a primary purpose so that program modifications are
usually limited to changes in the executive and to the replacement or addition
of modules.

3. The inputs and outputs of each module must be well-defined with clear and
specific interfaces through one or more interface subprograms (Refs. 17-19).

4. Data structures within a module must be isolated from the external environ-
ment.

V'p*..

4 PROGRAM ORGANIZATION

4.1 EXECUTIVE CONTROL

A. The executive is the program controller. The executive is a logic and flow director
only.

B. It writes the program name, version number, version date, current time, and date to %
the primary output text file.

C. It directs the reading of the input, directs the computations, writes appropriate
periodic progress messages, and directs the writing of the final output.

D. The primary purpose of the executive is to orchestrate the logic. All nontrivial
computations are done in subordinate subprograms. The executive is limited to
administrative computations necessary for orchestration.

4.2 INPUT PRACTICES

A. The reading of user-specified data from any source must be controlled by an input W9
subprogram or module.

1. It may read all the user-defined data directly or be an input master subprogram
that directs other subordinate subprograms to read or process input data.

2. Input data must be read only in input subprograms, not anywhere else in the
program.

7 . .

°i , . , ,,

B. Keyword-driven input is encouraged (Ref. 21). (Keyword-driven input is similar
to table-driven (Ref. 19) and name-directed (Ref. 21) input. This input form is
substantively different from NAMELIST, which is forbidden.

1. Keyword-driven input increases readability of input files, and minimizes order-
of-input errors (Ref. 21).

2. The objectives for keyword-driven input are (Ref. 21):%

Clarity: minimize user confusion,

Conciseeness: minimize useless verbiage,

Organization: maximize proximity of related information,

Flexibility: minimize artificial limitations, and

Ease of Uae/L earning: minimize inconvenience or time to learn.

C. Fixed-field input is acceptable. Human engineering of all formatted input data files is

critically important. Fields of five or multiples of five must be used. Such formatting 1
improves readability. I

D. Completely free-field input is discouraged except to implement keyword-driven in-

put. Free-field means the input stream has no predefined column positions where
information is to be placed.

4 ?

E. Specification of input options with numbers is forbidden; use mnemonic keywords. 11

F. Nonsensical or out-of-range values are forbidden as input options or control flags.
Example: Do not use the negative component of -10 as a control option for a%
variable that must be nonnegative to be correct.

G. Each user-defined input record must be written to an appropriate output file (echo

printed) immnediately following the READ state-ment for that record. This echo print
must identify the record and all the data fields on the record (Refs. 7 and 19). A
string of markers above or beneath an output line or page should be used to assist
in determining the columns of each field.

H. Default values should be assigned whenever possible by the input subprograms to
user-defined input variables when a value is not specified by the user (Ref. 7). Where
it is reasonable to assign default values, blank fields must be used to set them.
Default values must be identified and written out to the output file with the echo
print immediately following the READ statement for that record.

L. Input values which are critical (have no reasonable default) must be explicitly checked
as specified in the following paragraph. Such values must be identified in the internal
and external documentation. Nonentry of a critical value must be treated as bad
input data.

A. . . ~ - - j. . ~ .. jp-. , - .]

a -- - -

J. All input data must be checked for unreasonableness, inconsistencies, and out-of-
range values (Refs. 7, 19, 27, and 31). As a minimum, exhaustive error checking of .'-

all input data against thf entire permissible range of values is mandatory. If bad
input data are discovered, descriptive error messages must be written in sufficient
detail to locate and identify the problem.

K. If one or more fatal input errors are detected, scanning of input data should continue
as far as possible, issuing error messages as problems are detected. After scanning
of input data for errors has proceeded as far as practical, execution must stop or be
aborted. % %

L. Entering the same datum more than once is forbidden (e.g., the density of aluminum,.. -
must not be entered more than once).

M. Conceptually similar input data should be grouped together.

N. Changes of engineering units (e.g., inches to centimeters) should be made in input
subprograms, and should be done as soon as practical after associated READ state-
ments.

0. The reading of input should be terminated by an end-of-file or a marker (Refs. 7 and . ""
19). Termination by predetermined count is discouraged (Ref. 19).

P. The END option in a READ statement must be used to preclude an abort due to
a premature end-of-file on the input data stream (Ref. 19). The ERR option in
a READ statement must be used to detect bad data (but this check alone is not
sufficient input validation). The IOSTAT= read option may be used in lieu of the
END= and ERR= options in cases where it is desirable to do error checking after .. '.

the read, rather than to execute a simple branch.

-' 4.3 COMPUTATIONAL SUBPROGRAMS -

A. The computational subprograms (FUNCTIONs and SUBROUTINEs) must perform
all nontrivial calculations.

B. Each computational subprogram must either initialize or define at first use all vari-.* .

a ables internal to the subprogram (Ref. 7).

C. Temporary scratch files may be written and used as necessary in any computational
subprogram.

4.4 OUTPUT SUBPROGRAMS

A. All final, summary output must be written in output SUBROUTINEs. Interme-
diate printing in computational subprograms is permitted only when necessary for
diagnostic output.

-. .4%

o. - ,. - % % % . %, % " % .'.' .' ~% %' '.' - - • -- q" . ." - q" - • ," . • .' ,q"." ° -,- - . - •

B. Interim, diagnostic output may be written as needed as specified in Section 4.1,
Standards B and C on page 7, and Section 4.2, Standard G on page 8.

C. All output text and graphical data must be clearly defined and explicitly labeled.
The output pages should each provide sufficient explanation of their content. When
necessary for full understanding, output must be preceded by a page which explains%

in detail the output appearing on the following page or pages. Engineering units
must be associated with all output numbers and graph axes.

D. A scale factor of 1 must be used with all printed output which uses the "Ew.d"
format field descriptor (i.e., the digit printed to the left of the decimal point must be

F nonzero as in "1.2345E+12," rather than "0.1234E+13"). Note that a scale factor
applies to all subsequent fields in the FORMAT statement. If a "1PEw.d" precedes a

"Fw.d" specification, the "F" specification must be changed to "OPFw.d" to obtain

the desired "F" specification output.

45ERROR EXTSUBPROGRAMS . -

UA. Error exit subprograms are not required, but may be used to perform error analysis,
error reporting, and final cleanup prior to abnormal program termination.

-B B. When used, error exit subprograms must immediately precede any BLOCK DATA
subprograms or must be the last subprograms if BLOCK DATA subprograms are
not used.

4.6 BLOCK DATA PLACEMENT

When used, BLOCK DATA must be at the end of a module or program. All BLOCK
DATA must be named.

5DOCUMENTATION

5.1 EXTERNAL DOCUMENTATION

Each program must be fully documented. Documentation equivalent to the American
* National Standard Guidelines for the Documentation of Digital Computer Programs is

recommended (Ref. 12). Documentation must include: (1) the computer program abstract; :

(2) application information (user's manual); (3) problem or function definition; (4) program
* design information; and (5) sample problems (refer to Section 6.13, Standard G on page 28).

.5

*5.2 INTERNAL DOCUMENTATION%

'. The following internal documentation requirements apply to the executive and all sub-

5. 10

S N.I-11 INV V% VV1. wvv n. LK V-. "-1 .- -

be interspersed within the code itself (Refs. 14 and 31). Subprograms using nonANSI
FORTRAN-77 must be specifically identified in their preamble (refer to Section 9, page 30).

5.2.1 Preamble documentation - The beginning of the executive and each subpro-
gram must have a standard comment section that fully describes the coding and specifies
all information that passes into or out of it (Ref. 19). This preamble begins with the first
line below the name and ends with the line just prior to the first noncomment statement
(normally a PARAMETER statement). The following general rules apply to all preambles:

A. Correct grammatical style and punctuation will be used throughout the preamble.

B. Abbreviations will be limited to those defined within the preamble except for the
standard units abbreviations.

C. Every line of the preamble will have a 'C' in column 1, except blank comment lines.

D. The major headings Purpose, Input, Output, etc., will start in column five and all
additional indentations are moved to the right at multiples of 5 spaces.

The order and format of the preamble is specified to insure uniformity of content and
appearance. The content and order of the information in the preamble changes slightly for
the program executive, an ordinary subprogram, or an input subprogram.

5.2.1.1 Executive preamble - The following information in the sequence specified
will appear in each program executive:

A. The description of the program. Included in the description will be a statement of
purpose, an outline of the method used, a description of tbe known limitations of
the program, and a brief summary of the input and output data.

B. The version number and its date.

C. The name, organization, address and phone number of the programmer.

D. A list of all files used by the program. The list will include a brief description of the
file type, structure, and contents.

E. A list and one line description of each subprogram called by the executive. p-

F. An alphabetized list with full descriptions (including units) of all local variables used
in the executive.

G. A list of references used in the program.

See Appendix B for an example of an executive preamble.

11 """

/~ .

5.2.1.2 Subprogram preamble - The following information in the sequence specified
will appear in each subprogram:

A. A statement of subprogram purpose.

B. The version number and its date. Revisions to the initial version must include a brief
summary of each change, who modified the subprogram, and the date of modification.

C. The name, organization, address, and phone number of the programmer.

D. A list of files used and a brief description of the file type, structure, and contents.

E. A list and one line description of each subprogram required by the subprogram.

F. An alphabetized list and full descriptions (including units) of all local variables.

G. A list of references used to develop the subprogram.

H. An alphabetized list and full descriptions (including units) of all input variables from
all sources.

I. An alphabetized list and full descriptions (including units) of all output variables.

J. If a commercial software or system utility is used, a statement warning the user of
its use is placed here. Identify the I/O units used by the package or utility, if known.

K. An alphabetized list and full description of all special constants.

Optional information that can be included in the preamble is a statement of method
which would be placed immediately after the purpose. Notes may be placed anywhere if
they are needed to highlight some unusual feature or provide add:tional information. See
Appendix C for an example of a subprogram preamble.

5.2.1.3 Input subprogram preamble - Input subprograms have some documen-
tation requirements in addition to the requirements in Section 5.2.1.2. The following .,- ..
information must appear in the places specified:

A. A description of each input record must be given after the output variable list. The
information must include the variable name, the columns or field location, the format
and full description. The description must include the input engineering units, range
of allowable values, and program default values, if any.

B. If more than one record is read by the subprogram, then the number and types of
records that can be read must be summarized. This information will be placed just
following the description of the input records.

See Appendix D for a brief example of an input subprogram preamble.

12

% %

5.2.2 Comment form, style, and placement - Commenting uniformity eases the
tasks of reading and understanding the code.

A. Comments must provide additional information not easily found in the code itself ,I
(Ref. 7). Describe the intent of a segment of code; do not merely restate the code

(Ref. 19).

B. Comments containing information (i.e., other than blank separator lines) must equal IM
at least twenty percent of the total number of executable statements in the subpro- 1.V
gram. Each subprogram must meet this requirement. This minimum percentage is

intended to insure that the internal code documentation is adequate to explain the
variables, clarify the logic, and summarize what the code is trying to accomplish.

C. More than 15 consecutive FORTRAN executable statements are forbidden without
at least one informative comment. Meaningful sections of code should be shorter
than 10 to 15 executable statements (Ref. 19).

D. Comments must be written simultaneously with the code, not after coding has been
completed. When coding is changed, the comments must be modified simultaneously.
Simultaneous commenting has been shown to produce more complete and accurate
internal documentation (Refs. 9, 23, and 28).

E. Comments must always precede, not follow, the code being described. All comments
must appear between the PROGRAM, BLOCK DATA, FUNCTION or SUBROU-
TINE statement, and the associated END statement.

F. Comments which appear before the executable portion of each subprogram must
begin in collumn 5. Comments which follow the preamble and are interspersed with
executable code must be indented; these indented comments must begin in column 20
(Ref. 19). Further indenting is permitted occasionally when it improves clarity.

G. To improve visual clarity, blank lines must preceed and follow a block of one or more

informative comments.

H. Comments must not be bordered in any way by lines or columns of characters.
Drawing boxes around comments is forbidden.

I. Inserting comments between the continuation lines of nonexecutable or executable
statements is forbidden.

J. Identical comments which describe the contents of a COMMON block must immedi-
ately precede that block every time it appears. Each COMMON block variable must
be described in order of appearance. (Refer to Section 6.10, Standard H on page 26.)

K. Identical comments which describe the contents of a PARAMETER statement must
immediately precede that statement every time it appears.

13

L. Comments must use mixed upper- and lower-case letters.

1. Only printable US ASCII characters (refer to Appendix E) may be used in
comments and CHARACTER strings. i

2. Correct sentence structure and grammatical style should be used.

3. The imperative form of a sentence may be used.

4. Phrases may be used only when their meaning is absolutely clear (sentences are

6 ROBUST PRINCIPLES AND
IMPLEMENTATION

All subprograms must be written employing robust principles. A robust subprogram
does not fail under any circumstances. Defensive coding must always be used because it
helps achieve this objective (Ref. 7). Many proven techniques that lessen the probability
of a failure are summarized below.

6.1 CODE STRUCTURE

A. A PROGRAM statement must be the first statement in an executive, and therefore '
I must be the first statement in any program.

B. Each subprogram must have a single entry located only at the first executable state-
ment.

C. Each subprogram should have only a single exit located at the end of its executable
statements (Ref. 6). Exceptions are permitted only to eliminate a branch to the exit
and improve clarity. However, when a subprogram needs statements which are guar-
anteed to execute whenever the subprogram exits, then a single exit is mandatory.

D. A subprogram should be short, consistent with the process being performed. Sub-
programs with more than 100 executable statements are discouraged (Ref. 6). More

than 200 executable statements are forbidden. (Comments, FORMATs, and DATA
definitions are automatically excluded because they are not executable statements.
COMMON blocks and type, PARAMETER, and DIMENSION declarations are not
executable and are excluded as well.) Long subprograms tend to be disproportion-
ately more complex (Ref. 17).

E. Decisions made at one level of a software structure frequently have an effect on other
levels (Ref. 6).

1. If a subprogram references a subordinate subprogram, then the subordinate
subprogram is within the span-of-control of the first.

14

2. If a decision made within the first subprogram directly affects a process within
the second, then the second subprogram is within the scope-of-effect of the first
(Ref. 6).

3. The direct span-of-control of a subprogram is itself and all directly subordinate..
subprograms. "

a. In Fig. 2, Subprograms D, G, and H are in the direct span-of-control of
Subprogram D.

b. Subprogram K is within the indirect span-of-control of Subprogram D, and
in the direct span-of-control of Subprogram G.

c. Subprograms I, J, and K are basic subprograms.
d. Subprogram J is a general purpose subprogram which may be called from

any hierarchical level.
e. Subprograms D, G, H, and K constitute a module, with Subprogram D as

the interface.
f. Coupling between modules employing local COMMON blocks is forbidden.

For example, Subprogram G is within a module; it must not be linked lat-
erally to Subprogram F by a local COMMON block (refer to Appendix A).

4. Subprograms should be designed so that their indirect span-of-control is mini-
mized. A strictly-linear deeply-descending hierarchy of subprograms is generally
poor. A shallow parallel structure is recommended. '

5. A subprogram must not directly reference more than nine different subordinate
subprograms; thus, the direct span-of-control must not exceed nine (exclud-
ing intrinsic FUNCTIONs and general-purpose system library subprograms)
(Ref. 13).

F. The general flow of any subprogram must be downward from the entry to an exit
(Ref. 6), except for the DO, and the equivalent FORTRAN implementation of DO
WHILE (Ref. 20), REPEAT UNTIL, and LOOP LEAVE AGAIN (Ref. 22) constructs
(see Appendix F).

G. The action clauses of any control structure (looping constructs, CASE structures, *

and IF-THEN-ELSE statements) must be indented to provide better readability
(Refs. 6 and 19).

1. The code must be indented to reflect the nesting levels.

2. Each nest must be indented three columns to the right of those at the previous
nesting level.

3. All code within the same level of nesting must start in the same column.

H. The END statement must not be used in lieu of a RETURN statement. A RETURN
statement is always required.

*Refer to Appendix G for additional information on the CASE structure and repetitive ELSEIF use.

15

.. . -.

:--.-,-..'.',-.-'.'. -,-: .,'.' -,' " " -.. ,°.'......': .-. , . '.......... ,. . -. '. -.. ,' -..'.' " ...', .- %*,..'...' : '%:/

-~ ----.- .

I. If a statement does not need a label, it is forbidden to have one. A statement needs
a label only when it is referenced by another statement.

J. All specification statements must appear before the first executable statement and
must precede any statement FUNCTION definitions. ""

K. All statement FUNCTIONs must immediately precede the first executable statement
in each subprogram and must be preceded by comments which describe the purpose
of the statement FUNCTION, the arguments accepted and the results produced.

L. All statement labels must begin with at least the number 10 and be left justified ,4 "

in column 2. These numbers must be in ascending order within each subprogram
(Ref. 6).

M. FORMAT statements must be grouped at the end of each subprogram immediately
preceeding the END statement. FORMAT statement labels must begin with at least
100, must be in ascending order (Ref. 6), and must be larger than the preceding
executable statement label.

XEUTV..'-

QTHFR SURI:PROG.RAMRq OTHERP, SUB=PROGRAMS '" ,

SUBPROGRAM A """

SUPOGRAM B SUBPROGRAM C SUBPROGRAM D,,.'-

SUPORMI FsBRGA SUBPROGRAMK "'':'

Fgr 2c

Fiue2.upo5a lrr~yeape(e) .[;-

• o. .

16 . . -

." .-- %°%%° ." 5 .5 ~% % %. . - . o ... •% .% :- ".
5

. -* , 5 .%'-.. . -.'5 . .. *

• .

N. Continuation lines are permitted.

1. The maximum number of continuation lines for an executable FORTRAN state-
ment is nine (Ref. 6).

2. Continuation lines for executable statements must be sequentially numbered in
column 6 with integers sequenced from 1 through 9.

3. Continuation lines for nonexecutable statements must be sequentially numbered
in column 6 with integers sequenced from 1 through 9, then with sequential ' '

letters of the alphabet beginning with A in column 6 for continuations longer
than nine lines.

4. All continuations must have a blank in column 7, with the sole exception of
FORMAT statements.

0. Long statements should be organized into short and easily understood sections.
Statements with more than five simple sections are generally difficult to understand,
and increase the probability of introducing misplaced parentheses and unintended
operations (Ref. 19).

• 6.2 GENERAL RULES
4- %

A. Logical correctness, functional reliability, and good architecture are much more im-
portant than execution speed.

1. Coding must not be made complex to increase speed. Such efforts frequently

introduce errors while also producing coding which is incomprehensible to other
programmers (Refs. 7, 9, and 19).

2. Efficiency is usually determined by the algorithm chosen rather than by how
compactly it is coded (Ref. 7).

B. Deeply nested statements produce obscure code. Multiple nesting should be used
with great care, and only when multiple nesting will produce well-structured code.

1. Triply or deeper nested "IF-THEN-ELSE" statements are discouraged (Ref. 6).

2. Many repetitive ELSEIF clauses with lengthy blocks and inadequate comments
produce obscure code and are discouraged. 9

4- 3. A few well-documented repetitive ELSEIF clauses with short blocks (simulating
the Pascal language CASE statement) produce understandable code and are
encouraged. Each ELSEIF clause must be preceded by informative comments.

C. Error checking code must be permanently incorporated (Ref. 19). All error messages
must be descriptive, grammatically correct, and concisely written.

17S..

. -41
:.

.. -..-..

..........

D. Each program must be written to minimize requirements on the computer operator

such as punched card handling, magnetic tape mounting and dismounting, restarting

after programmed PAUSE, and so forth (Ref. 21).

E. The PAUSE statement may not be used unless it is absolutely essential for the correct %

operation of the program (Refs. 6 and 21). All such PAUSE statements must be fully %

documented with complete operating instructions.

F. All FORTRAN code must be in upper-case letters (Ref. 1), except for CHARACTER
data and comments.

G. CHARACTER data may contain mixed upper and lower case (Ref. 1), and upper

and lower case use is recommended for general text output.

H. Engineering units must be the same throughout the program, and are permitted to be
changed only immediately after input or immediately before output. This consistency

minimizes the probability of inadvertently using incorrect units in a computation.

I. Unsatisfied externals are not permitted in executable code. Stub subprograms (dummy
subprograms which merely return sample values rather than calculated results) may
be used, if necessary, to satisfy externals during code development.

6.3 DATA INITIALIZATION

A. Floating point and integer constants which have physical, mathematical, or engineer-
ing significance (e.g., Avogadro's number "N" and the speed of light "c") should not

appear explicitly in the executable code (Ref. 6).

1. These constants should be defined using PARAMETER names and their de-

scription provided in comments prior to the PARAMETER statement. Names
for these constants must be descriptive. .' %°.-

2. Unitless, simple mathematical floating point values (such as 0.5, 2.0, 3.5, 10.0,
50.0, etc.) usually do not require any additional description and should appear
directly in the executable code.

3. Integer values should appear directly in the executable code rather than in a

defined constant (refer to Standard C of this section and Standard A of Sec-
tion 6.5, page 21).

4. Any irrational number (e.g., "7r" and the base of natural logarithms "e") must ..

be defined with at least 10 significant digits using a PARAMETER statement. .

Computer system constraints rather than the programmer should limit preci-
sion.

B. When a scalar variable represents a nonchanging value, the variable must be preset
in a PARAMETER statement rather than by executable code (Ref. 7).

18 _64..,-.

.A _ ,.,.....

1. Other variables should be initialized through the use of executable code (Refs. 7
and 9); however, reasonable exceptions exist (such as the initialization of coun-
ters).

2. Only one version of a PARAMETER statement may be maintained. Each PA-
RAMETER statement and the associated comments used in more than one
subprogram must be inserted automatically into each applicable subprogram
(Ref. 6). This capability exists on many computer systems using features such
as UPDATE, HISTORIAN, or the INCLUDE statement (Ref. 20). PARAM-
ETER statements used only in a single subprogram may be defined explicitly
in that subprogram.

C. PARAMETER names must be used to set all array dimensions. When arrays are in
COMMON blocks, explicit PARAMETER statements must be used. All references
to array bounds must use the PARAMETER name and not a literal constant. This
requirement does not extend to object-time dimensioning. Using the same PARAM-
ETER name to set more than one dimension is forbidden unless the dimensions are
logically related and will always be identical.

6.4 ARITHMETIC OPERATIONS

A. Parenthesize to avoid ambiguity (Refs. 7 and 19). Do not rely on an assumed eval-
uation order for arithmetic expressions. In all arithmetic expressions, parentheses
must be used to define the proper order of evaluation. For example, the following
ambiguous statement: A-B/C/D should be either A-(B/C)/D or A=B/(C/D). A ".2
better form would replace one of the divisions by a multiplication. .-

B. Expressions involving successive exponentiations (such as A**B**C) must be explic-
itly parenthesized to show order of evaluation (Ref. 19). The evaluation order is
clarified by parentheses (e.g., A**(B**C)).

C. Whole numbers used as exponents should be integer constants or integer variables
(Ref. 6).

D. Mixed mode arithmetic statements are discouraged (Ref. 6). Mixed mode assign-
ments or arithmetic expressions are allowed only with the explicit use of type con- ..
version FUNCTIONs (e.g., INT(X), FLOAT(N), DBLE(X)) (Ref. 6). Integer expo-
nentiation is not considered mixed mode arithmetic.

E. When an operation is performed that has a restricted domain, the validity of the op-
eration must be checked before the operation is executed (Ref. 19). Some operations
with restricted domains are:

1. Division - Check every denominator for a zero or near-zero value.

2. Square Root - Make sure the argument is nonnegative.

19 ;'

~~~~~~~~~~~~~~~~~~~~.'...-....."..,.............. .-.... : ..... :..... ....... ,...-.-.........-..'.'." '. . -. . -...... ,



* %- ,..

3. Log or Ln FUNCTIONs - Make sure the argument is greater than zero. "'.A%-"

4. Arcsine or Arccosine - Make sure the absolute value of the argument is less

than or equal to one.

5. Arctan2 - Make sure that the arguments are not both zero.

However, identical redundant checking is not necessary. If an invalid argument is

detected, an error message must be printed out.

F. Testing whether one computed floating point value is exactly equal to another is
very risky (Ref. 7). All floating point tests for equality of computed variables must

incorporate a test accuracy tolerance whose value is limited by the unit roundoff of
the target computer.

G. Subtraction of nearly equal floating point numbers should be avoided. Restructure

the computations or use double-precision coding in this situation. Quite often the
problem can be avoided by finding an alternate expression for the desired quantity. ..-. ,
For example, the expression for the floating point quantity

A 1.0 - COS(X)

is given in better computational form by

A = 2.0* (SIN(0.5 X)) * *2

The two expressions are identical in a mathematical sense, but if X is close to zero
the second expression is better suited for use on a computer. Another example is

A = /i.o + X - v1.-0- X

which is very unstable as X approaches zero, but

2.0 * X
A.o + x + V - x

is mathematically equivalent and avoids the numerical problem as X approaches

zero. In both examples the prefered expression is more complex in appearance than
the original expression. Therefore, the reason for using the more complex expression

must be carefully explained in comments.

H. When using an intrinsic function, use its generic name. Generic names simplify the
referencing of intrinsic functions, because the same function name may be used with
more than one type of argument. For example, DSQRT(X) requires the argument X
to be a double precision number. If, however, SQRT(X) is used (the generic form of
the square root function) the argument may be either single or double precision and

the result will be the same type as the argument.

20

--..



6.5 GENERAL INPUT/OUTPUT GUIDANCE

A. Unit numbers for input, output, and scratch files should be designated by a -

PARAMETER constant (Ref. 6); however, an integer variable is permitted if more ..

prudent. An integer constant must not be used.

B. All files must be explicitly opened and closed.

1. A list of files with a brief description of the exact structure and contents of each
file must be included in the comments section at the beginning of the executive.

2. An OPEN statement allows the programmer to explicitly define the status of a
file when it is opened and to take action if an expected file does not exist. A file
should not be opened at the beginning of the program and left open until the
end of the program. A file should be closed immediately when no more data
are to be read from or written to it.

C. All input/output statements must be coded using READ and WRITE statements.

1. All READ or WRITE statements must contain unit numbers. The unit to be
read from or written to must not be expressed as a numeric integer constant, but '

must use the same PARAMETER constant or integer variable which opened ""r
that unit. %

2. Each READ and WRITE statement must be internally documented and ex-
plained; the documentation must summarize the purpose of the READ or
WRITE statement.

D. Unformatted input or output is encouraged for very large data files, all scratch files,
and restart files (refer to Section 8.2, page 29); it is prohibited for all other files.
The FORMAT translation that takes place in writing and reading formatted scratch . -

files can needlessly consume significant amounts of computer time. In addition, some
accuracy is always lost in the formatting process which is not lost in unformatted
input or output.

6.6 DO LOOPS

A. Each DO loop must end solely on a unique CONTINUE statement used only for that
loop. Unique CONTINUE statements must be used as terminal statements for DO -

loops to clearly mark the end of the loop (in a manner identical to the nonstandard
END DO construct) (Refs. 19 and 20).

B. The initial and terminal parameters of a DO loop must be explicitly checked or coded
to assure that array dimensions will not be exceeded if an array is referenced within
the loop.

21
-=4

J . . . . . . . . . .. . . . . . . . .. . . .

V V - -. . ... V .. . . . . .



'k.1 _1'_ As I. I.- I.- .- s-r77

6.7 BRANCHING

A. Programming logic should be straightforward, orderly, and should use simple logic.

B. Branching should be held to a minimum (Ref. 31).

1. Particular care must be paid to the necessity and appropriateness of each OF

branching statement.

2. Each branching statement must be internally documented and explained; the
documentation must summarize the purpose of the branch.

* 3. It is sufficient to group a conditional statement with the execiitable statements
it controls and document the combined code segment once. The conditional
test and branch statement does not need to be documented separately from the

code which it controls.

C.Branching into any loop or control structure is forbidden.
D. Backward transfers are restricted to the equivalent FORTRAN implementation of

DO WHILE (Ref. 20), and REPEAT UNTIL and LOOP LEAVE AGAIN constructs
(Ref. 22) (refer to Appendix F). All other backwards branching is forbidden.

E. GO TO statements are discouraged; if used, the jump must be downward (Ref. 19),
with the exceptions of the DO WHILE, REPEAT UNTIL, and LOOP LEAVE
AGAIN constructs. GO TO branching statements usually produce obscure code

(Refs. 7, 14, 18, and 19).

F. Every computed GO TO statement must be followed immediately by an uncondi-.
tional STOP that locates and identifies the computed GO TO statement and prints
the index value for which the computed GO TO failed.

G. The logical IF should be used instead of the arithmetic IF (Refs. 7, 19, and 21). The
logical IF is understood more quickly and easily than the arithmetic IF.

H. Parenthesize to avoid ambiguity (Refs. 7 and 19). Do not rely on an assumed evalu-
ation order for logical expressions.

6.8 VARIABLE NAMES, TYPES, AND USE

A. Variable names convey useful information when carefully selected (Refs. 10, 14, and

1. The names of all variables, PARAMETERs, and COMMON blocks should be
words or obvious truncations of words that mnemonically relate to the primary
purpose of the variable, parameter, and common block. For example, an ap-
propriate variable name for the speed of a moving object could be "SPEED."
Inappropriate names would be "XYZ" or "EED" or "SP", because these exam-
plea have no obvious and apparent mnemonic relationship to speed.

22



2. Long (8-character maximum) variable names should be used.
3. Using the first letter of each word in a phrase to form a variable name is for-

bidden unless it constitutes an accepted acronym.

4. Using the numerals 0 (zero) or 1 (one) in variable names is discouraged. These
numerals are easily confused with the alphabetic characters "0" and "I" in
upper case on many output devices (Refs. 10 and 18).

5. FORTRAN-77 symbolic names must be different from FORTRAN-77 keywords.

B. Only one type declaration is allowed for any constant or variable name (Ref. 6). ,,

C. The FORTRAN-77 default implicit declaration for REAL and INTEGER variable
names, PARAMETER names, and nongeneric FUNCTION names must be used. Y

1. FORTRAN-77 implicitly assigns integer values to such names beginning with
I through N; otherwise real values are assigned. Adhering to this convention
greatly facilitates debugging and decreases the probability of confusing REAL
and INTEGER types.

2. Meaningful variable names can usually be found within the FORTRAN implicit

declaration constraint. Otherwise the leading letter "I" (for integer) or "R" (for

3. The flexibility of explicitly declaring variable names does not outweigh the
subsequent disadvantages. Several modern high-level languages require that
all variables be declared explicitly, but this flexibility requires a programmer
to remember a large number of variable declarations or repeatedly search out
the declaration of each variable in every subprogram. This unnecessarily corn-
plicates modification and debugging tasks by seriously hampering immediate
understanding of a variable declaration. Constantly looking up variable dec-
larations is usually unrelated to the immediate programming task and has a
detrimental effect. Using the FORTRAN implicit declaration makes it much
easier to remember those variables that are explicitly declared since they are
usually few in number.

4. Adherence to the FORTRAN-77 implicit declaration is required by this stan-
dard. Explicit declaration of variables (and PARAMETERS) within the conven-
tion is needlessly redundant and is forbidden. Unlike FORTRAN, most modern
procedural languages (including Ada, Jovial-J73, Pascal, and Modula-2) require
explicit declaration of entities before they may be used. This mandatory dec-

laration produces reliable code in other languages by allowing the compiler to
perform extensive error checking at compile time and catch some programming
errors that otherwise are often obscure. These concepts are recognized as useful
in other languages, but are not to be applied because of the advantage pro-
vided by FORTRAN in this situation. This class of error will be minimized
by adherence to Section 6.4, Standard A, page 19; Section 6.9, Standards B

23



7- .

and C, page 24; Section 6.10, Standards D, E and G, page 26; Section 6.13,
Standards B, C, D, and G, pages 27 and 28; and Section 8.1, page 29.

D. The integer variable names I, J, K, L, M, and N must be used only as loop indices,
counters, or subscripts. %

E. A flag is a variable which can have only two possible values (e.g., 0 or 1). It is used

to direct the flow of control.

.% 1. INTEGER or REAL flags are discouraged. Use true or false LOGICAL variables
with mnemonically meaningful names instead. The mnemonic content of the
name should assert the meaning of the "true" logical value.

2. Multiple flags should only be used in a subprogram to clarify and consolidate
the logic which controls the computation into clearly defined conditions. The
number of flags is an indicator of the number of logical conditions significant to
the computation.

F. Temporary variables are discouraged (Ref. 7). They are usually unnecessary and
complicate the code (Ref. 19). Most modern optimizing compilers recognize common
subexpressions and optimize them automatically.

1. Using a temporary variable to increase execution speed while simultaneously
obscuring the coding is forbidden.

2. When temporary variables are used, they should express physical or mathemat-
ical relations and should be meaningful quantities having a mnemonic name or ".
a name reflecting standard notation.

3. All temporary variables must be commented.

4. Temporary variables must be assigned before, and in close proximity to, the
coding which first uses them.

6.9 COMMUNICATIONS VIA ARGUMENTS

A. A subprogram must always be called with the full set of arguments (Refs. 18 and 19).
V

B. Variable names must be identical when passed to or from subprograms (Refs. 19 and
31), with the exception of variable names in statement FUNCTIONs and general-
purpose or library subprograms. Exempted general-purpose subprograms include
but are not limited to interpolation, root-finding, numerical integration, equation-
solving, and graphics subprograms.

C. Arguments (also called actual parameters) must be variable names, FUNCTIONs,
or simple expressions.

24 "-'"". "

**5.~J * '. .. ,. I..- .-.
_ _ _ _ _ _ _ . . . . o.. ... .. -]



1. Explicit numeric constants must not appear as arguments (Ref. 19). This con-
straint defends against inadvertently changing the value of a literal constant.
Errors in which subprogram values are changed improperly can be detected more
easily when numeric constants are names which can be examined by ordinary
debugging techniques.

2. If an expression is used as an argument, it must be simple. A simple argument
must not contain more than four arithmetic, logical, relational, or character
operators (Ref. 6).

D. FUNCTION names appearing as arguments must be listed in an EXTERNAL or
INTRINSIC statement (Ref. 19).

E. With one exception, FUNCTIONs must return results only through the normal value
of the FUNCTION. A FUNCTION which alters the values of the calling arguments is

forbidden; SUBROUTINEs must be used for that purpose (Ref. 19). The exception
is a FUNCTION used solely to implement keyword-driven input.

6.10 COMMON BLOCKS

A. COMMON blocks must be carefully defined and strictly controlled to reduce cou-
pling between subprograms (Ref. 6), and to minimize span-of-control/scope-of-effect
conflicts (Ref. 18) (refer to Section 6.1, Standard E, page 14).

1. The primary method of providing access to arrays and variables is through
argument lists.

2. The secondary method of providing access is through labeled COMMON blocks,
whose scope is severely restricted (Ref. 6).

3. COMMON blocks may be either local or global.

a. A local COMMON block may be used only within a module. Once a value
is set in a COMMON block it may not be changed unless it is a local
COMMON block confined to a module, as defined in Section 3.5, page 4.

b. A global COMMON block may be used anywhere in a program but only
within specified constraints.
(1) Globally applied COMMON blocks are permitted to carry only un-

changing quantities into subprograms. Global COMMON blocks must -
not transfer variables out of a subprogram that have been modified or 3
altered in that subprogram, except for the initialization of the COM-
MON block. Data stored in a globally applied COMMON block must
not be subsequently modified.

(2) Globally applied COMMON blocks must be loaded by means of either
DATA statements in BLOCK DATA, by reading a data file at the be-
ginning of program execution, or by a one-time calculation.

25

*-. . . . . - . - - • . . . ... ..: - ~ % Nk .A . .. A j. % p.'°° \ ;-



.. .'

B. Undisciplined COMMON usage makes a program hard to understand (Ref. 19).
Variables should be transferred to subprograms primarily via argument lists, not
COMMON blocks.

C. Blank (unlabeled) COMMON is forbidden (Ref. 6), with the two rare exceptions in
Section 10, Standard G, page 31.

D. COMMON blocks should not introduce extraneous variables into a subprogram
(Ref. 18). The fact that a variable exists in a COMMON block does not justify -
including the entire COMMON block in a subprogram to access the individual vari-
able.

E. COMMON blocks must be short and contain only information that is conceptually
similar or related (Refs. 6 and 31).

F. All subscripted arrays in COMMON blocks must have their dimensions declared in
the COMMON statement, rather than in another specification statement.

G. A COMMON block must be identical in each subprogram in which it appears (Refs. 18
and 19). This consistency must be assured by using the INCLUDE procedure ex-
plained below.

H. Only one version of a COMMON block may be maintained. Each COMMON block
and the associated comments must be inserted automatically into each applicable
subprogram (Ref. 6). This capability exists on many computer systems using features
such as UPDATE, HISTORIAN, or the INCLUDE statement (Ref. 20).

I. The INCLUDE file defining a COMMON block loaded by BLOCK DATA must
contain an "EXTERNAL name" statement, where "name" is the name of the BLOCK
DATA subprogram. This declaration insures that if the COMMON block becomes
part of a library, the BLOCK DATA subprogram is included in the program linkage
if the COMMON block is referenced.

J. Variables in COMMON blocks should have at least three-letter names. I, J, K, L, %
M, and N are forbidden as COMMON block variables.

6.11 ARRAYS

A. Whenever array indices are used outside a region of strict index control (e.g., a DO
LOOP with a fixed number of loops is a region of strict index control) the indices
must be checked to verify that the maximum array bounds have not been exceeded.
If the array bounds have been exceeded, the program must stop or abort with an
abnormal termination message.

B. An array should have the same dimensions in all subprograms in which it is included.
Changing the number or bounds of array dimensions between a subprogram and its
subordinate subprograms is discouraged (Refs. 6 and 18).

26
-. " ,



C. When an array and its dimensions are passed to a subordinate subprogram as ar-
guments, the array dimension must be checked prior to the call if the dimension
has been obtained from a calculation. It should be validated again in the directly
subordinate subprogram. *. *

~.N

6.12 PROGRAM TERMINATION

A. Program terminations must use STOP statements or an abort subprogram.

1. CALL EXIT and END statements will not be used in lieu of STOP statements.

2. There must be only one normal STOP in any program. Normal termination
must be in the executive and should say "NORMAL TERMINATION." All
other terminations will be abnormal stops or aborts and must provide:

a. where the error condition occurred, and

b. the variable or condition that caused the termination.

B. An abort subprogram may be a system-specific subprogram used solely for the pur-
pose of terminating abnormal program execution, such that a controlling job or
command procedure is also aborted properly.

C. Failure of calculations not needed for essential computations, such as those being
performed for auxiliary output, should not cause termination of the primary calcula-
tion if it can proceed legitimately. However, an error of this type must be diagnosed
and an appropriate error message issued.

6.13 DEVELOPMENT PRACTICES AND
PROGRAM TESTING

A. Well-tested, defensively-coded, machine-portable, documented library FUNCTIONs
and general-purpose subprograms should be used (Refs. 7 and 31). Do not "reinvent
the wheel."

B. Each subprogram must be meticulously checked by peer review (Refs. 15, 16, 19, 27,
28, and 31).

C. Each subprogram must be compiled and tested independently during development.
Errors can then be traced quickly to specific subprograms (Ref. 3).

D. Each subprogram must be exhaustively tested by constructing driver programs that
provide input and write the output from the subprogram being tested.

1. The driver program must construct sample input data sets for the subprogram
being tested such that all paths are taken and all boundaries (geometrical,
physical, or numerical) are used (Ref. 27).

27

e W.



2. Software tools such as static analyzers, test-case generators, and coverage ana-
lyzers must be used for this purpose (Ref. 25-27, and 29).

3. Plausible results are encouraging but do not by themselves constitute sufficient
evidence of correctness.

E. Using supporting external and internal documentation, a typical programmer should
be able to understand the logic and verify with execution tests that a subprogram
works correctly for many representative test cases after evaluating it for less than
one day.

F. After subprogram development, all subprograms in a module should be combined
into a single file and compiled as a module. This procedure simplifies subprogram -

management by reducing the number of files, and allows global compiler optimization.

G. Each program must be tested (Refs. 27 and 31).

1. Test problems must include a complete set of input data, a complete listing
of the output produced by the program when run with the test data, and a
compiler listing and cross-reference map of the program itself.

2. These test problems serve to detect blatantly incorrect programs, but do not
assure the general correctness of the program nor can they constitute a complete
verification.

3. At least three different typical test problems must be run.

H. In order to demonstrate satisfactory machine compatibility performance of a devel-

oped program, test problems and the associated results must be furnished so that
identical tests can be made on the target computer to demonstrate that the program
operates successfully.

7 LISTING ORGANIZATION

The program may be listed in either of two formats. The first format is recommended.

A. The first listing format must be in the following order: executive, followed by all
subprograms (except error exit SUBROUTINEs and BLOCK DATA) in alphabetical
order, followed by error exit SUBROUTINEs, followed by BLOCK DATA.

B. The second listing format uses an order determined by considerations of logical cohler-
ence. In this case, the executive must still be listed first, and a list of all subprogramis
and modules in their order of appearance must be included in the comments at the
beginning of the executive. Subprograms of a module should be listed together.

28



8 SYSTEM DEPENDENT
CONSIDERATIONS

8.1 PROGRAM EXECUTION PRESET

Prior to program execution, the computer memory should be preset to a value which
represents extreme conditions and which will terminate execution if the value is encoun-
tered during a calculation. For example, a preset of negative indefinite should be used on
Control Data Corporation (CDC) systems.

A. Preset values of zero or unity do not meet this criterion and may not be used unless
the computer system provides no suitable alternative.

B. Relying on a machine preset (such as zero) for variable initialization is forbidden. All

variables requiring initialization must be preset in the FORTRAN program before
they are referenced.

8.2 PROGRAM RESTART

A. Programs which typically run for many hours on the target machine should have
a restart capability. These programs should periodically dump all essential data in
some semi-permanent form for restarting the program, should a restart be necessary

(refer to Section 6.5, Standard D, page 21).

B. Restartable programs must be capable of terminating and dumping all essential data

using a method which minimizes, and if possible eliminates, interactions with the
computer operator. .2

1. This method may be nonANSI standard and computer system dependent. For
example, in the CDC environment, the sense switch is such a method.

2. In programs using extensive computations involving complex cycles or itera-
tions, dumping of restart data may be deferred until the current cycle or itera-
tion is complete.

8.3 COMPILER OPTIONS

A. When available, program flow error traceback should be activated.

B. If run-time array-bounds checking is available from the compiler, it must be used
but is not a substitute for index checking.

29

-,,S ' - . , - - . ' . . . . - . . . . . - . . . . - . . - - - - . - -. . . . . . - . - . - ....



- 6717777777 *7 *

PI

P9 NONSTANDARD PROGRAMMING

I A. Computer code not in ANSI FORTRAN-77 may be used only when such c:'ding is
essential to the successful operation of the program, and either

1. no means whatever exist to write equivalent code in ANSI FORTRAN-77, or

2. nonstandard FORTRAN-77 code is specificaily required by this standard.

B. Any nonstandard source code except for the INCLUDE (or its equivalent) must be
isolated in separate subprograms. The subprogram interfaces must be built so that
the nonstandard subprogram can be removed and replaced easily when the program
is moved to another processor.

C. The INCLUDE (Ref. 20) or its equivalent is restricted to PARAMETER statements
or COMMON block insertions with associated EXTERNAL statements, and to their
associated and preamble documentation.

1. An example of required nonstandard coding is the mandatory use of the IN-
CLUDE (or its equivalent) to standardize COMMON blocks and their associ-
ated documentation.

2. On a computer system without this capability, a FORTRAN preprocessor which
accomplishes this task using the VAX FORTRAN INCLUDE statement format
should be provided to support programs containing PARAMETER statements
and COMMON blocks. ..

3. Compiled listings should be used for code development and debugging, rather
than uncompiled source code. This procedure permit- the effects of the IN-
CLUDE or its equivalent to be evaluated easily by the programmer.

*1.-+d

10 RESTRICTIONS ON FORTRAN-77

A. ASSIGN statements are forbidden (Ref. 21).

B. ENTRY statements are forbidden (Ref. 21).

C. EQUIVALENCE statements are forbidden (Refs. 6, 21, and 24).

1. EQUIVALENCE statements increase coupling between subprograms and in-
crease the possibility of a span-of-control/scope-of-effect conflict (Ref. 18).

2. The primary application of EQUIVALENCE statements was to save memory

by allowing multiple uses of the same space, but the storage benefit does not
offset the increased risk of error.

30
. -. ..



D. RETURN statements which contain an argument are forbidden. This prohibition
assures that a subprogram always returns control to the statement immediately fol-
lowing the CALL or FUNCTION reference which invoked that subprogram (Refs. 6
and 21).

E. PRINT statements are forbidden.

F. REAL and INTEGER statements are forbidden. Refer to Section 6.8, Standard C
on page 23 for supporting rationale. This prohibition is recognized as different from
the recommendation in Ref. 21; unfortunately, the trend toward mandatory strong
declarations is in conflict with an inherent advantage of the FORTRAN-77 language.

G. BLANK COMMON is permitted only in two rare situations.

1. Some computer systems have the capability to adjust dynamically a program's
main memory usage during execution. Sometimes this capability uses unique
system methods in conjunction with BLANK COMMON. This nonstandard
approach is discouraged and may be used only when absolutely necessary. This
is one of only two times BLANK COMMON may ever be used.

2. The only other situation where BLANK COMMON may be used is when it is
imbedded in a commercial software module.

H. CHARACTER variables, PARAMETERS, and comments should contain only print-
able US ASCII characters (refer to Appendix E).

31~



'** "- "d

REFERENCES

1. American National Standard Programming Language FORTRAN, ANSI X3.9-1978,
American National Standards Institute, Inc., NY, 3 April 1978.

2. D. Parnas, "On the Criteria to be Used in Decomposing Systems Into Modules,"
Communications of the ACM, 15, p105 3 , 1972.

3. R. Gauthier, and S. Pont, Designing Systems Programs, Prentice-Hall, Englewood
Cliffs, NJ, 1970.

4. R. House, "Comments on Program Specification and Testing," Communications of
the ACM, 23, p324, 1980.

5. R. Smith, "Validation and Verification Study," in Structured Programming Series,
Volume XV, produced under USAF contract F30602-74-C-0186, RADC, Griffiss
AFB, NY, by the IBM Federal Systems Center, 1975.

6. Radar Set AN/FPS-118, Software Standards and Procedures Manual, produced un-
der USAF contract F19828-82-C-0114, P.D.B. No. 316, Revision 0, HQ ESD, Hanscom
AFB, MA, by General Electric, Syracuse, NY, 31 March 1983. (This manual is very
strict, and in many cases is more stringent than the standards of this report.)

7. B. Kernighan, and P. Plauger, The Elements of Programming Style, Second Edition,
McGraw-Hill Book Company, NY, 1978. (This book is an exceptionally fine exposi-
tion of good programming practices.)

8. M. Jackson, Principles of Program Design, Academic Press, London, 1975.

9. E. Yourdon, Techniques of Program Structure and Design, Prentice-Hall, Inc., En-
glewood Cliffs, NJ, 1975. (Pages 292-294 contain an excellent summary of the most
common programming bugs.)

10. ANS Standard Recommended Programming Practices to Facilitate the Interchange
of Digital Computer Programs, ANS Standard 3-1971, American Nuclear Society,
Hinsdale, IL, 1971.

11. Guidelines for Considering User Needs in Computer Program Development, AND-10,
National Standards Association, Inc., Washington, DC, 1978.

12. American National Standard Guidelines for the Documentation of Digital Computer
Programs, ANSI N413-1974, American National Standards Institute, Inc., NY, 1974. ..- .r -

13. N. Chapin, "Structure Analysis and Structured Design: An Overview," in Systems
Analysis and Design, A Foundation for the 1980's, W. Cotterman, et al., eds., North
Holland Publishing Company, NY, 1981.

32



14. N. Enger, "Classical and Structured Systems Life Cycle Phases and Documentation,"
in Systems Analysis and Design, A Foundation for the 1980's, W. Cotterman, et al.,
eds., North Holland Publishing Company, NY, 1981.

15. M. Connor, "Structured Analysis and Design Technique," in Systems Analysis and
Design, A Foundation for the 1980's, W. Cotterman, et al., eds., North Holland Pub-
lishing Company, NY, 1981.

16. F. Baker, "Software Design or What Stands Between Requirements and Programs?"
in Systems Analysis and Design, A Foundation for the 1980's, W. Cotterman, et al.,
eds., North Holland Publishing Company, NY, 1981.

17. V. Basili and B. Perricon, "Software Errors and Complexity: An Empirical Investi-
gation," Communications of the ACM, 27, p42, 1984.

18. G. Berns, "Assessing Software Maintainability," Communications of the ACM, 27,
p14, 1984.

19. C. Hughes, C. Pfleeger, and L. Rose, Advanced Programming Techniques-A Sec-
ond Course in Programming Using FORTRAN, John Wiley & Sons, NY, 1978. (The
first three chapters are particularly relevant to good programming style.)

20. Military Standard-FORTRAN, DOD Supplement to American National Standard
X3.9-1978, MIL-STD-1753, 9 November 1978. (This supplement to FORTRAN-
77 has been approved by the Department of Defense and contains recommended
extensions to FORTRAN-77. It has not been made a part of this standard nor is
any of it automatically incorporated into this standard.)

21. J. Wagener, "Status of Work Toward Revision of Programming Language FOR-
TRAN," FORTEC Forum SigPlan Technical Committee on FORTRAN, Number 2,
Ser. No. 8, June 1984.

22. E. Solonay, J. Bonar, and K. Ehrlich, "Cognitive Strategies and Looping Constructs:
An Empirical Study," Communications of the ACM, 26, p853, 1983.

23. E. Horowitz, and S. Sahni, Fundamentals of Data Structures, Computer Science
Press, Inc., Rockville, MD, 1983.

24. M. Metcalf, "Has FORTRAN a Future?," ACM FORTRAN Forum, 3, No. 3, p21, --
December 1984.

25. G. Berns, "MAT, A Static Analyzer of FORTRAN PROGRAMS and the Most Corn-
mon FORTRAN Reliability Problems," Proceedings of the Digital Equipment Com-
puter Users Society, p309, December 1984.

28. L. Gaby, I, ANALYZE, FORTRAN Program Analyzer Users Guide, Computer Sci-
ences Corporation Report H&T-C-7021, Albuquerque, NM, May 1985.

33



1- 11Tr W-ML-r-V-7. 7 -17 " " b . % -- --- - .- - -.4 -

. . qm-"

27. S. Saib, "RXVP - Today and Tommorrow," in Software Validation, H. Hausen, ed.,
North Holland Publishing Company, NY, 1984.

28. A. Ackerman, "Software Inspections and the Industrial Production of Software," in
Software Validation, H. Hausen, ed., North Holland Publishing Company, NY, 1984.

29. R. Buck, and J. Dobbins, "Application of Software Inspection Methodology in De-
sign and Code," in Software Validation, H. Hausen, ed., North Holland Publishing
Company, NY, 1984.

30. L. Osterweil, "Integrating the Testing, Analysis and Debugging of Programs," in
Software Validation, H. Hausen, ed., North Holland Publishing Company, NY, 1984.

31. T. Bowen, G. Wigle, and J. Tsi, "Specification of Software Quality Attributes,"
RADC-TR-85-37, Vol. I, Vol. I., and Vol. III, RADC, Griffiss AFB, NY, February
1985."-"

-. ",..-

4
.-.

%

3.

e- .'L. F- :1 7- k- t

' ,-..



F7 -3 7
.%

INDEX

Abbreviations 11 Definitions 2, 5, 10, 14, 16
Abort(s) 9, 26, 27 Development 18, 27, 28, 30
Arithmetic Operations 19 DIMENSION Statements 14
Array(s) 3, 4, 19, 21, 25, 26, 29 Dimension(s) 19, 21, 26, 27
ASSIGN Statements 30 Documentation 1, 4, 8, 10, 17, 18, 22, 27,

30
BLOCK DATA 3, 4, 10, 13, 25, 26, 28 DO Loop Statements 15, 21, 26, 48
Branching 14, 22 DO WHILE Structure 15, 22, 48

Statements 22

CALL EXIT Statements 27 Efficiency 17
CALL Statements 31 ELSEIF Statements 15, 17, 50::- ~ ~ AL Staemnt DOSae3ns21--.

CASE Structure 15, 17, 50 END DO Statements 21

CHARACTER Data 14, 18, 31 En D Statements 9
Closing Files 21 In READ Statements 9
Code Structure 1, 2, 5, 11, 13, 14, 15, 17- Engineering Units 9, 10, 12, 18

19, 21-24, 27, 30 ENTRY 30
Coluns 8,EQUIVALENCE Statements 30Column(s) 8, 11-13, 15-17

Comment Documentation 10, 11, 13, 14, Error Checking 9, 17, 23 _-4Error Exit 5, 10, 28 _

16-21, 24, 26, 28, 31 Eroxt:,1,2
C O M M O N B lo c k 3, 4 , 13 1 5, 1 9E rr o r (s ) 1 , 5 , 8 , 1 7 , 2 0 , 2 5 , 2 7 , 2 9 , 3 0

=.COMMON Block 3, 4, 13-15, 19, 22, 25,.%.,

N 26, 30, 31, 38 Fatal 9
Global 3, 4, 25 Executive 3, 5, 7, 10, 11, 14, 21, 27, 28

Local 3, 4, 15, 25 Preamble 11
COMMON Statement 26 Exit 5, 10, 14, 15, 27, 28

Computational Subprograms 9 Explicit Declarations 23

Conditional Statements 22 External Documentation 8, 10, 28
Constant(s) 18, 19, 21, 23, 25 EXTERNAL(s) 25, 26, 30 "_'-

Special 12 .7
Continuation 13, 17 File(s) 4, 7-9, 11, 12, 21, 25, 26, 28

CONTINUE Statements 21 Closing of 21
aStructure 11, 12Control 7, 8, 14, 15, 22, 24-27, 31 Tce 11, 12Type 11, 12 ,.

• Data Initialization 18 Flag(s) 8, 24
DATA Statements 4, 25 Floating Point 18, 20
Data Structure 1, 4, 5, 7, 38 Format 8, 10, 12, 21, 28, 30 %.%

Declaration(s) 14, 26, 31 Listings 28
Declaring Variables 23 FORMAT Statements 10, 14, 16, 17, 21
Default 8, 23 FORTRAN 1, 2, 5, 11, 13, 15, 17, 18, 22,
Default Value(s) 12 23, 29-31

35

%-4

" .. . .... .~ . ... . . . . . . . . . . . . . . .. . . . . . .



FUNCTION 3, 9, 13, 15, 16, 19, 20, 23- Label(s) 3, 4, 10, 18, 25, 26I
25, 27, 31 Length 17

Listings
GO TO Statements 22, 50Coplr2,3

Program 28HISTORIAN Statements 19, 26 L~lVrals1,1

I/O012, 21 LOOP LEAVE AGAIN Structure 15, 22,
Statements 21 48

IF Statements 48 Loop(s) 15, 21, 22, 24, 28
Arithmetic 22Mehd1

Logical 22
IF-THEN-ELSE Statements 15, 17 Modular Programming 1

Module 1-5, 7, 10, 15, 25, 28, 31
Implicit Declarations 23Exml4,1
INCLUDE Statements 2, 19, 26, 30 Srcue4
Index 22, 26, 29
Initialization 3, 18, 19, 25, 29 Naming Variables 22, 24, 26
Initialize 9, 19 Nonstandard Programming 30
Input 5, 7-9, 18, 21, 27

Data 7-9, 11, 21, 27, 28 OPEN Statements 21
Default values 8 Opening Files 21
EOF 9 Output 5, 7, 10, 18, 21, 23, 27, 28
Fixed-field 8 Data 10, 11, 21A
Formatted 8 Diagnostic 9
Free-field 8 Echo Check 8
Keyword-driven 8, 25 Echo Print 8
Record 12 Labeling 8
Subprogram 4, 7-9 List 12 1

Documentation 12 Subroutine 9
Preamble 12 Unit numbers 21

Unformatted 21 Variables 12
Unit numbers 21
User Defined 8 PARAMETER Statements 13, 18, 19, 22,
Variables 12 30

INTEGER 23, 24, 31 PAUSE Statements 18
Integers 23 Preamble 11

Constants 19, 21 Documentation 11, 30
Exponentiation 19 Executive 11 2
Values 17, 18, 23 Format 11
Variables 19, 21, 24 Order 11

4,.Internal Documentation 4, 8, 10, 13, 21, Rules 11
22,28 PRINT Statements 31

Program 1 V
Keywords 8, 23, 25 Description 11

36
Ad -



Limitations 11 Variable(s) 3, 4, 8, 9, 13, 18-27, 29, 31
Structure 1, 2, 5, 17, 21 Names 12

PROGRAM Statements 13, 14 Version Number 11, 12
Programmer 11, 12 WRITE Statements 21
Purpose 11, 12

READ Statements 8, 9, 21
REAL Statements 23, 24, 31
Real Values 23
References 12
REPEAT UNTIL Structure 15, 22, 48
RETURN Statements 15, 31 ..
Revisions 12
Robust Coding Techniques 1, 14

Scale Factor 10
Scope-of-effect 15, 25, 30
Scratch Files 9, 21

Jr. Software, Commercial 12 " ,
Span-of-control 14, 15, 25, 30 .

0 Specification Statements 16
Speed 17, 24 N.

Stop 9
STOP Statements 22, 27
Structure 5, 14, 15, 22, 38
Structured Style 7
Subprograms 3, 5, 11, 12, 38

Arguments 24
as Functions names 25

BLOCK Data 10
Interface 4 "-.
Linkage 26
Preamble 12 €...
Structure 5

SUBROUTINE Statements 13
System Utility Programs 12

Temporary Variables 24
Testing, for equality 20
Testing, Program 27 ,.'
Type Conversion FUNCTIONs 19

Type Declaration 23 ' 1
UPDATE Statements 19, 26

37
-U.7



APPENDIX A
MODULES AND COMMON BLOCK

RESTRICTIONS

A primary consideration of this report is the treatment of structural content. Structural
content limits or promotes good programming methodology and governs the ultimate form
that programs are allowed to assume. This appendix discusses the problem with regard to%

COMMON blocks.
.4. A powerful construct in the organization of programs is a modularity intermediate be-

tween the subprogram and the entire program. The separation of a large computational
process into internally-related subprograms with a minimal external interface is recognized
in this report. One condition of separability is the manipulation of a single data struc-
ture. Typically the subprograms outside of the module need interface only at the highest
level and have no need to know any of the particulars of the data structure or how it is

* manipulated.
In general, the data structure may involve one or more arrays, indices into the arrays,

status values, and other variables. The external environment never needs access to any of . .

the particulars of the data structure in order to use it; all the outside process needs is a
functional interface. This leads to grouping the related subprograms, variables, and arrays
into a module. As perceived by the external environment, the programming elements
which implement the data structure are local to the module and hidden from the external
environment. As perceived from within the module, these programming elements are global
only within the module and access may be shared only within the module. The external
environment has access only through the arguments of the interface subprogram(s) of the
module.

High level languages support modules in various ways, but FORTRAN-77 does not pro-
vide direct support to a module. Indirect support is available by using a labeled COMMON

%~

statement. Its local use in a module can avoid needless vertical coupling via argument lists
between the subprograms within a module. However, the wanton misuse of COMMON
statements introduces increased coupling between modules and is forbidden.

Quite often COMMON blocks are used to avoid passing variables through intermedi-
ate subprograms which do not use them directly in any computations. Artificially passing
parameters unrelated to the immediate process being performed is not good programnming
methodology. The resulting proliferation of parameters can degrade the reliability and
readability of a program and increase the coupling of the subprogram to the environ-
ment. This situation is frequently caused by bad program architecture. Widespread use of
COMMON blocks to pass variables laterally is not a good programming solution. Instead,
tightly controlled modules with limited lateral coupling should be used in conjunction with
good overall program architecture.

4. -.38



- K K.. K. K 7K7

WV

APPENDIX B
EXECUTIVE PREAMBLE EXAMPLE

PROGRAM ORBIT

C Program Description -

C Program ORBIT is an ephemeris program to compute satellite

C orbits. The program is based upon Vinti's (Refs. 1. 2. 3. 4.

C 5) Theory of Accurate Intermediary Orbits. The treatment to

C account for the atmospheric drag perturbations is based upon
C a paper by Watson, et al. (Ref. 6). Vinti found a closed form
C gravitational potential about an axially symmetric planet in
C oblate spheroidal coordinates. This solution accounts for all
C the effects of the second and third zonal harmonics and about
C two-thirds of the fourth harmonic. This potential, which
C simultaneously satisfies Laplace's equation and separates the
C Hamilton-Jacobi equation, succeeds in reducing the problem of
C satellite motion to quadratures. Watson, et al., provided an
C analytical method to account for the drag starting with the

C orbital elements defined by the Vinti theory (in the program
C they are referred to as the Vinti elements). The atmospheric
C model of the thermosphere was developed by Jacchia (Ref. 7).

CV E R S I 0 N I 7 MAY 1985

C Questions or comments should be addressed to

C John P. Doe
C XYZ Corporation
C Albuquerque. NM 12345

C Com. Phone (505) 123-4567

C Files Used -

C IUfIT Currently unit number 14. Associated with file name
C INPUT. Coded sequential, input file. Contents are the
C user defined input data.
C MSG Currently unit number 8. Associated with file name
C MESAGE. Coded sequential, output file. Contents are
C error and warning messages. 17

C NUNIT Currently unit number 17. Associated with file name V N%
C OUTPUT. Coded sequential, output file. Contents are

39



I

C the normal printed output, the orbit specification.

C Subroutines Required -

C DRAG Changes the Vinti elements due to drag effects.

C EPHINP Reads all the program input.
C EPHOUT Writes all the program output.
C INFORM Computes all the orbital point information.
C INITAL Initializes the starting conditions.
C POSITN Computes the satellite position in inertial space.

C Local Variables -

C DRGFLG A logical control flag. If true, atmospheric drag
C calculations are to be included in the ephemeris.
C LAST A logical control flag. If true. the last ephemeris
C point calculation has been completed.
C TIMFLG A logical control flag. If true. the step increment
C between each ephemeris calculation is in equal steps
C of time. Otherwise, the step increment is in equal
C steps of true anomaly angle.

C References -

C 1. J. P. Vinti, ''New Method of Solution for Unretarded
C Satellite Orbits'', Journal of Research of the National
C Bureau of Standards B. Mathematics and Mathematical Physics
C Vol. 62B, No. 2, 105-116 (1959).

C 2. J. P. Vinti. "Theory of an Accurate Intermediary Orbit
C for Satellite Astronomy". Journal of Research of the

C National Bureau of Standards B. Mathematics and Mathematical
C Physics, Vol 65B, No. 3, 169-201 (1961).
C 3. J. P. Vinti, "Intermediary Equatorial Orbits of an
C Artificial Satellite', Journal of Research of the National
C Bureau of Standards B. Mathematics and Mathematical Physics

C Vol. 88B, No. 1. 5-13 (1962). ... .

C 4. J. P. Vinti, "Inclusion of the Third Zonal Harmonic in an

C Accurate Reference Orbit of an Artifical Satellite"
C Journal of Research of the National Bureau of Standards B.

C Mathematics and Mathematical Physics. Vol. 70B, No. 1, 17-46

C (1966). .
C 5. J. P. Vinti. "Improvement of the Spheroidal Method for
C Artifical Satellites", The Astronomical Journal, Vol. 71.

C No. 1, 25-34 (1969).

C 6. J.S. Watson, G.D. Mistretta. and N.L. Bonavito, "An

C Analytical Method to Account for Drag in the Vinti

40

::.-...



ir

,~V7 F .j..l

C Satellite Theory'". Celestial Mechanics, Vol. 11, 145-176
C (1976).
C 7. L.G. Jacchia, "Revised Static Models of the Thermosphere
C Exosphere with Empirical Temperature Profiles'', SAO
C Special Report No. 332. May 1971.

..

.5:>

.. --

"5.i'.

41

I::::i



APPENDIX C
SUBPROGRAM PREAMBLE EXAMPLE

SUBROUTINE SEMIAX(ARRAY. AXIS.BALIST .CHANGE, ECCENT .NUMBER. SMALLD)

C Purpose -

C To calculate the change of the semimajor axis of the orbit due
C to drag.

C VERSION 1. 19 OCT 83

C Programmer - John P. Doe

C XYZ Corporation
C Albuquerque, NM 12346
C Phone (505) 123-4667

C Files Used - None

C Subroutines Required-

C FACTOR Calculates the atmospheric fitting factors.

C PACKS Packs ARRAY with atmospheric fitting data.

C Local Variables -

C COEFF3 An array of three integration coefficients that are
C interval dependent, in kilometers.
C COEFF7 An array of seven integration coefficients that
C are constant over the entire integration interval,

C unitless.
C SMALLB The small b in the King-Hele expression for the
C atmospheric density, unitless.

C References -

C 1. J.S. Watson, G.D. Mistretta, and N.L. Bonavito, "An
C Analytic Method to Account for Drag in the Vinti Satellite
C Theory'', Journal of Celestial Mechanics, Vol. 11, 145-177

C (1975).
C 2. T. E. Sterne, "An Introduction to Celestial

C Mechanics'. Interscience Publishers, Inc., New York, 165
'pC (1980). -

r-: - =

C Input-

42



C ARRAY An array that contains the integrals of the form .

C EXP(Th2*E)*COS(E)**I. 1-Q.1.....13 (unitless).
C AXIS The semimajor axis of the orbit in kilometers. 0
C BALIST The ballistic coefficient of the satellite in
C kilograms per kilometer**2.
C ECCENT The eccentricity of the orbit, unitless.
C NUMBER The number of integration intervals, unitless.
C SMALLD The small d is the King-Hele expression for the
C velocity of the satellite relative to the atmosphere
C (Ref. 2). unitless.

C Output -

C CHANGE The change of the semimajor axis of the orbit due to "
C the atmospheric drag, in kilometers.

C Special Constants -

C CONST The gravitational constant for the earth in

C kilometers**3/second**2.

C ROTATE The rotational rate of the earth in radians per
C second. -"

3-.

• .., ..:

43 "-"-"-



- - - - - -- . - , - -, -.- - --- - p-h - . -,- , . - . -'_. p , . -. -r -5 .. ..- ,-- . - - p- --

APPENDIX D
INPUT SUBPROGRAM PREAMBLE

EXAMPLE

SUBROUTINE READIT(ERROR.HEIGHTLAT .LONGNCARD)

C Purpose - To read, verify and write an echo check of the observer's

C location information required for look angle computation.

C VERSION 1. 13 FEB 83

C Programmer - John P. Doe

C XYZ Corporation
C Albuquerque, NM 12345
C Phone (505) 123-4567 I

C Files Used -

C IUNIT Currently unit number 14. Associated with file name
C INPUT. Coded sequential, input file. Contents are the
C user defined input data. "

C NUNIT Currently unit number 17. Associated with file name
C OUTPUT. Coded sequential, output file. Contents are
C the normal printed output, the ephemeris.

C Subroutines Required - None. .

C Local Variables - None.

C Input -

C NCARD The number of records that have been read.

C Output -

C ERROR A logical control flag. If true, a nonrecoverable
C error has occured. '

C HEIGHT The height of the observer's location above the
C reference geoid in kilometers.
C LAT The latitude of the observer's location in radians.

C LONG The longitude of the observer's location in radians.

C Record Format "

C VARIABLE CARD

44.44 " --

.Z .Z--Z4~.c.:,..'.,::.,



C NAME COLS. FORMAT VARIABLE DESCRIPTION
C HEIGHT 1-10 F10.2 The height of the observer in kilometers.
C Value must be greater than zero.
C LAT 11-20 F1O.2 The latitude of the observer in degrees.
C Value must be in the range of -90. to 90.
C LONG 21-30 F10.2 The longitude of the observer in degrees.
C Value must be less than the absolute
C value of 360.0 degrees.

445



APPENDIX E
PRINTABLE US ASCII CHARACTERS

The printable US ASCII characters in Table E-1 are the only characters that may ap-
pear in comments or as literal character strings (e.g., V , 2H<>). In rare situations, the
CHAR intrinsic function may be used to assign CHARACTER variables and PARAME-
TERS to characters that are not shown in Table E-1. The use of other characters must be
isolated in a small number of subprograms and carefully documented as machine-dependent
code. These restrictions are motivated by the ideas that a printed program listing should
accurately represent the program, and that programs should not depend on a particular
collating sequence, but only that the collating sequence has the properties specified in the
FORTRAN-77 standard.

-p4.

46

..-.-:

V 1 , 'p



7 ,4-T!. " - .- T7 -- 7 C- '.' T77- T .7-- - 7~~-7 .M M F.* 7. P.

-

TABLE E-1. PRINTABLE US ASCII CHARACTERS

Decimal Octal Character Decimal Octal Character Decimal Octal Character
32 40 64 100 a 96 140 "
33 41 1 65 101 A 97 141 a
34 42 66 102 B 98 142 b
35 43 8 67 103 C 99 143 c
36 44 $ 68 104 D 100 144 d

4 37 45 % 69 105 E 101 145 e
38 46 & 70 106 F 102 146 f
39 47 71 107 G 103 147 g
40 50 ( 72 110 H 104 150 h
41 51 ) 73 il1 I 105 151 i
42 52 74 112 106 152.
43 53 + 75 113 K 107 153 k
44 54 76 114 L 108 154 1
45 55 - 77 115 M 109 155 m
46 56 78 116 N 110 156 n
47 57 / 79 117 0 111 157 o
48 60 0 80 120 P 112 160 p
49 61 1 81 121 Q 113 161 q
50 62 2 82 122 R 114 162 r
51 63 3 83 123 S 115 163 s .4.;-

52 64 4 84 124 T 116 164 t 4
53 65 5 85 125 U 117 165 u

- 54 66 6 86 126 V 118 166 v
55 67 7 87 127 W 119 167 w
56 70 8 88 130 X 120 170 x
57 71 9 89 131 Y 121 171 y
58 72 90 132 Z 122 172 z
59 73 91 133 [ 123 173 {
60 74 < 92 134 124 174 .

C" 61 75 - 93 135 125 175 }
62 76 > 94 136 126 176

4- 63 77 ? 95 137 -

.447-

4- . .-- ?

, -- a . x - . .s - ' i _a' I'_ ..-a' . , _ "_ ' L _ n - % -.. ~ l - . .-. ' '.' ! "'_,,Lr., t_ . .a .4 -?,-



and~~~* (3 LOPLEV AAN

When~~~~~~~~~~~~~~ imleene inFRRNteD HIElo ae h om

I F <odtin OT

<statements>

Sheera lwo constructs othlue tamnt labelRn7 DOe loops ecuarle salowed. The areoc

cthct DOhe, REPEAT UNTIL, andire LOOP LEAV AGAI betelscntutbes.thtempeferre
order ofe impemeTAN-7m of these constructs s:fe (nl) DO WHIe (2)tio REEA Utlo

I~~a <satmets

1IF ( <condition> GO TO 2

<statements>

GO TO 1 I

2 <next statement>

The EPEA UNTL imlemetatin is



The generality is obtained by allowing the loop exit statement to fall anywhere within .: "
the body of the loop. This generalization is the LOOP LEAVE AGAIN construct. In
certain circumstances the LOOP LEAVE AGAIN construct expresses the action of the
loop without being error-prone.* This standard acknowledges the general LOOP LEAVE
AGAIN construct as acceptable.

Std, Comncto fteAL2,pIIS

49-



.-.'.A-

APPENDIX G
CASE STRUCTURE AND

REPEATED ELSEIF CONSTRUCTS .

The CASE structure applies to situations where at most one of a mutually exclusive A " "

set of conditions can exist at some point in a computation. The CASE statement does not
exist in FORTRAN-77, but a CASE structure can provide a multipath switch to select
the course of computation based on the specific value of the condition which is in effect.
A CASE structure can be implemented in FORTRAN-77. It can increase the clarity of
code because, if used in a consistent way, one can immediately recognize that a decision is - -

being made among a mutually exclusive set of options.
When such a situation presents itself to a FORTRAN-77 programmer, two choices are

available. A computed GO TO can be used if the set of options is determined by an
integer value in the range 1 ... N. The other choice is the repeated ELSEIF construct. The .,

repeated ELSEIF construct is preferred over the computed GO TO statement.

The repeated ELSEIF construct has the following desirable features:

* No GO TO statements are used. GO TO statements usually obscure the code.

* Entry to a repeated ELSEIF is at the top of the construct, flow of control is linear, "
and exit is at the bottom. Within the flow of control, each block is either executed
or bypassed, based upon a condition tested at the start of the block.

9 Control exits the repeated ELSEIF structure following the execution of the first
code segment which follows a successful test. Frequently the mathematics of a com- -
putation favors one condition over the others; placing this condition first optimizes
average performance while maintaining sound programming methodology. Other
FORTRAN-77 programming methods force best case, average case, and worst case
performance to be the same (equal to the worst case); this can be computationally
expensive if there are several paths.

9 The trapping of unexpected errors, which occur when none of the anticipated condi-
tions hold, is automatic with the use of an ELSE block following the final ELSEIF
block. If the repeated ELSEIF construct is not used, then special testing of the error
condition is forced into a separate statement. Since such a separate test must be
coded explicitly, and must redundantly test the mutual exclusion of all the other q
tests, there is potential for introducing errors. Any change in a disjunctive test must "
be reflected in the separate exclusion test, which makes the code more error prone
and modification more difficult.

U (.'VERNF. PRfNTI%.;,UFFICF '40ifi 616C 1 14 40005

.. %

50

'"o ' "° .""° ". "" .°" . '%" "J " ."." d .%'% " "•"/ -" • . € . . " " " " . . . - -.- _ . . - " .- °-, . - - - '.-.



J.4

*1

Aa.

~ ~1*'

'4

44

j

.4,

p

-

I

5,

4.,
-4-

-'p
-. 5

.~,*.d**

**

5. .*4

- - 4.'

5'.. .4,

.4
~ -, ~.4-*.4


